記事

OK、僕らほどじゃないけどどうもAIもいろいろできるようだ

相変わらずバタバタとしているのですが、年末にすこしだけ時間を見つけて読みたかったこの本を読んでみた。

〈インターネット〉の次に来るもの 未来を決める12の法則

〈インターネット〉の次に来るもの 未来を決める12の法則

この本は、社会がどのように変わっていくかを12のポイントでまとめているのだが、「COGNIFYING」の章で、テクノロジーの浸透に関して、そのステップにかんして以下のようなフローの記述があった。

  1. ロボットやコンピュータに僕の仕事などできはしない。
  2. OK、かなりいろいろとできるようだけれど、僕なら何でもこなせる。
  3. OK、僕にできることは何でもできるようだけれど、故障したら僕が必要だし、しょっちゅうそうなる。
  4. OK、お決まりの仕事はミスなくやっているが、新しい仕事は教えてやらなきゃいけない。
  5. OKわかった、僕の退屈な仕事は全部やってくれ。そもそも最初から、人間がやるべき仕事じゃなかったんだ。
  6. すごいな。以前の仕事はロボットがやっているけれど、僕の新しい仕事はもっと面白いし給料もいい!
  7. 僕の今の仕事はロボットもコンピュータもできないなんて、すごくうれしい。
  8. [以下、これを繰り返す]

これまでも上のようなことはたくさんおきてきたが、これからの将来、このような流れがもっとたくさん現れてこれまで「人間の仕事」と定義されていたものがAIやロボットのしごとになっていくと筆者のケヴィン・ケリーはいう。たとえば、今日の以下のニュースなどはとてもわかり易い例で、この手のデータに近しい部分をAIは人間より上手くやってくれる。このフローのスピードがだんだんあがっていき、おそらく10年後にある仕事は、今存在する仕事からはだいぶ違った形になっていると思う。

この「XXを人間ではなくAIにやらせよう」というテーマをどこに当てていくかというのが、僕も2016年の大きな仕事になった。最終的に僕はAlpacaというスタートアップでXXにトレーディングを選んだわけだが、これから5年くらいはAIが社会に浸透していく上でのテーマになっていく。一時期AI界隈で話題になった、日立の汎用AIの動画を見てみよう。


人工知能 Hitachi AI Technology/H, Hitachi AI Technology/H - Hitachi

この動画は結構AI界隈のスタートアップが集まるとネタになっていたのだが、shi3zさんのエントリーでも書いたけど、お会いしたときPFNの丸山先生は非常にお怒りだった。

僕なんかだと、要はこの動画はIT化すればある程度、業務改善できますよという日立のソリューションを「汎用人工知能」と名前をつけているだけで、そこまで怒らなくてもいいのではと思っていたのだが、丸山先生の言っていることはごもっともである。もともとWatsonがこれに近しい売り方をしていて、IBMの既存ソリューションをWatsonという人工知能ブランドとしてマーケティングしているわけなのだが、IBMは裏に実際にそごいのがあるのかも、、、しれない。

ただ、この「XXをAIにやらせよう」というのは、ちょっと深掘りするポイントなので、僕の経験もあわせて少し考えてみた。

いったい何を学習の元のデータにするつもりなのか

まずは「いったい何を学習の元のデータにするつもりなのか」が重要だ。基本的にはディープラーニングを含む機械学習全般はまずデータありきである。なにを利用して学習させるか、そのデータにそもそも抽出・発見できる何かがあるのか、という部分をクリアする必要がある。この部分で、伝統的にIT投資をあまりしてなかったケースが多く、DBとしてこれまでやってきたことを記録していないことが多い。特に、システム部門がプロフィットセンターの意思決定をサポートする気概がない場合、この部分でデータをだすことや、データの保存そのものに問題が多いことが多い。

そもそも置き換える仕事はメインのしごとなのか

人間の仕事というのは、分解してみるとそのメインのしごとは全体の3割くらいで、じつはほかの7割くらいのことに時間を取られていましたというのは全然珍しくない。というかそれが主流だ。Alpacaがやっているトレーディングも、このあたりの問題があって、トレーディングに利用している時間は業務の半分以下で、トラックレコードの記録、顧客対応などトレードの意思決定以外の部分に時間を使っている。

ラストワンマイルをクリアできるのか

この場合のラストワンマイルというのは、物理的なラストワンマイルと精神的なラストワンマイルの両方がある。物理的なラストワンマイルは、フローのなかでどうしても物理的な対応が必要だったり、なにか電子化されていない箇所があったり、理由は様々に考えられる。精神的なラストワンマイルは、簡単にいうと抵抗勢力の存在だ。最初に書いたフローのとおり、AIの導入は最初は「OK、かなりいろいろとできるようだけれど、僕なら何でもこなせる。」のステップになるのだから、ここではいくらでも問題点をあげることができる。ここで躓くと多くの場合AIは次の一歩に進めない。

置き換えるモノが企業・人間にとってどれくらい割に合わないか

そして最後のポイントが置き換えるモノが企業・人間にとって割に合わないかである。簡単にいうと、AIが置き換えるタスクは時間単価が高いほど置き換えるビジネスプライオリティが高い。ただし、ここで気をつける必要があるのは、AIは疲れないという点で、たとえば画像認識は人間ならほぼだれでもできるが、これが店舗全体を常に見ているという話になった途端、人間にとってはとてもやりたくない仕事になる。つまり、質と量の問題があり、質も重要だが、もし量があることでできることが変わるのであれば、量を積むことで質にすることができる。

そんなことをつらつらと考えながら読んだわけですが、2016年はこのあたりでとてもたくさん勉強させてもらいました。たぶん、2017年はもっともっとこのような問題にぶち当たるとおもうので、一つ一つクリアしていって、AlpacaでもAIをトレーディングの領域に適用していきたいものです。

あわせて読みたい

「インターネット」の記事一覧へ

トピックス

  1. 一覧を見る

ランキング

  1. 1

    山本太郎氏「汚染水の海洋放出は約束を反故にした許し難い暴挙」

    山本太郎

    04月17日 16:35

  2. 2

    「お前を消す方法」でお馴染み!? Windows懐かしのOfficeイルカの現在

    文春オンライン

    04月17日 10:38

  3. 3

    霞ヶ関は人気のない職場……で良いのか

    大串博志

    04月17日 08:09

  4. 4

    特に得点はなかったようだが、何はともあれ目立った失点がなかったのはいいことだろう

    早川忠孝

    04月17日 17:19

  5. 5

    マクドナルド、ワタミの取り組みにヒント?正念場を迎える対消費者ビジネス

    大関暁夫

    04月17日 12:37

  6. 6

    「学校は無理に行くところじゃない」と現役教員が思う理由

    不登校新聞

    04月17日 14:49

  7. 7

    報じられない聖火リレーの真実 大音量のスポンサー車両がズラリ

    NEWSポストセブン

    04月17日 17:06

  8. 8

    被災地で甦った戦火の記憶。「熊本に凱旋」今なお諦めずに…ハリルホジッチ氏独占取材

    塩畑大輔

    04月16日 10:03

  9. 9

    なぜ今なのか-処理水放出と少年法改正

    階猛

    04月17日 09:13

  10. 10

    名ばかりのオリンピックになっても「開催出来れば、それで成功」

    早川忠孝

    04月17日 18:42

ログイン

ログインするアカウントをお選びください。
以下のいずれかのアカウントでBLOGOSにログインすることができます。

コメントを書き込むには FacebookID、TwitterID のいずれかで認証を行う必要があります。

※livedoorIDでログインした場合、ご利用できるのはフォロー機能、マイページ機能、支持するボタンのみとなります。